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Localization of Hydrogen Peroxide in Pumpkin (Cucurbita ficifolia 
Bouch ) Seedlings Exposed to High-Dose Gamma Ray 
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Hydrogen peroxide (H202) was detected cytochemically, via transmission electron microscopy (TEM), in pumpkin tis- 
sues exposed to high-dose gamma ray. Its reaction with cerium chloride produced electron-dense precipitates of 
cerium perhydroxides. Their patterns of deposition in the tissues of both control plants and those irradiated with 
gamma ray (PIG) were typically found in the plasma membranes and cell walls. However, gamma irradiation remark- 
ably increased the intensities of cerium perhydroxide deposits (CPDs) in the plasma membranes and cell walls for all 
tissue types, but especially the leaves. The only exception was for vessels in the cotyledons. After gamma irradiation, 
the HzO2 content in all tissues was higher than in the control samples, except for the cotyledons of PIG, where the 
H202 content was lower than for all others. The increased appearance of CPDs may have been due to the enhance- 
ment of H202 accumulation by gamma radiation. This accumulation also varied according to the cell or tissue type 
examined. 
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Stresses such as UV exposure, herbicides, drought, 
temperature stress and intensive light induce the 
production of reactive oxygen species (ROS), includ- 
ing hydrogen peroxide (H202), superoxide anion 
(02 �9 -), hydroxyl radicals (OH) and singlet oxygen, in 
plant tissues (Noctor and Foyer, 1998; Desikan et al., 
2003). These oxidative stresses can directly damage 
cells by modifying target molecules, including pro- 
teins, lipids and DNA (Fridovich, 1986; Wolff et al., 
1986; Imlay and Linn, 1988; Bolwell and Wojtaszek, 
1997) and by decreasing membrane integrity (Lee et 
al., 1998). 

H202, a key player in oxidative stress (Cho and 
Sohn, 2004), is required for a variety of physiologi- 
cal processes associated with cell wall biosynthesis 
(Olson and Varner, 1993; Wi et al., 2005b). It can 
be produced by a number of enzymatic systems, 
and is commonly synthesized in response to vari- 
ous environmental stimuli (Sutheland, 1991). In 
addition, although H202 is a normal metabolite 
and not particularly cytotoxic at optimal concentra- 
tions, when these concentrations are increased by 
environmental stresses and ionizing radiation, they 
lead to cell lethality (Halliwell, 1974). Thus, H202 is 
one of the most important agents in terms of cell 
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damage. 
H202 contents can be remarkably increased by 

water radiolysis derived from gamma rays (Croute 
et al., 1982). High doses also inhibit plant growth, 
promoting H202 production that is harmful to cell 
organelles, while also inducing the formation of 
leaf trichomes and the alteration of morphologies 
(Nagata et al., 1999; Wi et al., 2005a). Although 
reports have described this relationship between 
H202 and gamma rays, none has yet demonstrated 
the distribution of H202 after such irradiation. 

Histochemical localization of H202 production has 
relied on starch/KI reagents (Olson and Varner, 1993; 
Schopfer, 1994) or staining for peroxidase activity 
(Angelini and Federico, 1989). However, these tech- 
niques are indirect methods and are limited to 
detecting H202 produced only at the cut surfaces of 
tissue sections (Ros Barcel6, 1998). Precise his- 
tochemical detection of H202 on an ultrastructura[ 
level is based on its reaction with cerium chloride 
(CeCl3), which forms electron-dense insoluble pre- 
cipitates of cerium perhydroxide, Ce(OH)2OOH: Ce 3+ 
+ 2H202 ~ Ce(OH)2OOH + H +. Although the Ce 3+ 
that originates from CeCI~ only slowly penetrates 
into the tissues, this second method is now widely 
used for cytochemical detection (Bestwick et al., 
1997; Wi et al., 2005b). 

In this study, we applied the cerium chloride 
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method to tissues of pumpkin seedlings to examine 
the effects of high-dose gamma rays on H202 produc- 
tion, and to obtain more detailed information on the 
pattern of H202 deposition after irradiation. 

MATERIALS AND METHODS 

Plant Materials and Gamma Irradiation 

Seedlings of pumpkin (Cucurbita ficifolia Bouch~) 

Figure 1. Microphotographs of leaf (A and B), petiole (C and D), hypocotyls (E and F), and cotyledon (G and H) of control (A, C, 
E, and G) and plant irradiated at I kGy (B, D, I =, and H). Bar = I00 lam. 
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were cultivated in a greenhouse at the Advanced 
Radiation Technology Institute at Jeongeup, Korea. 
Uniform seedlings were planted in polyethylene 
bags containing a bed-soil mixture. At nine days 
old, the seedlings were exposed to 1 kGy, gener- 
ated by a gamma irradiator (6~ ca. 164,000 Ci 
capacity; AECL, Canada) at the Korea Atomic 
Energy Research Institute, Korea. This dose was 
confirmed with a thermoluminescence dosimeter 
(Alaine, Germany). Samples of leaves, petioles, cot- 
yledons and hypocotyls were collected 19 d after 
the radiation treatment. 

Cytochemical Localization of Hydrogen Peroxide 

H202 was detected by the cerium chloride (CeCI3) 
method, as described by Bestwick et al. (1997). 
Briefly, small pieces (1 mm 3) of the middle zone from 
every fragment of the irradiated leaves, petioles, coty- 
ledons and hypocotyls were excised and incubated 
for 1 h in freshly prepared 50 mM Mops buffer (pH 
7.2) containing 5 mM CeCI3. The samples were then 
fixed for 1 h in a mixture of 1.25% (v/v) glutaralde- 
hyde and paraformaldehyde in 50 mM sodium 
cacodylate buffer (pH 7.2). They were then washed 

Figure 2. Localization of hydrogen peroxide in vessel (A and B) and parenchyma cell (C and D) of leaf in control (A and C) and 
plant irradiated at 1 kGy (B and D). Note that cerium perhydroxide deposits are significantly increased in plasma membrane 
(arrow heads) and cell corner middle lamella after gamma irradiation. CML, cell corner middle lamellae; ML, middle lamella; V, 
vessel wall. Bar = 0.5 pro. 
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in the same buffer, post-fixed for 1 h in 1% (w/v) 
osmium tetroxide (OsO4), dehydrated in a graded ace- 
tone series, and embedded in Spurr's resin (Spurr, 
1969). Ultra-thin sections (70 to 90 nm thick) were 
mounted on uncoated nickel grids and examined with 
a transmission electron microscope (TEM) 0-1010; Jeol, 
Japan) at 80 kV without post-staining (uranyl acetate 
and/or lead citrate). To confirm the specificity of CeCI3 
staining for H202, catalase was used for its decomposi- 
tion. Semi-thick sections were cut with a glass knife on 
an ultramicrotome (MT-7000; RMC, USA), stained with 
0.1% aqueous toluidine blue, and examined with a 
light microscope CI-E300; Nikon, Japan). 

Determination of H202 Content 

The content of hydrogen peroxide was measured 
colorimetrically, as described by Jena and Choudhuri 

(1981). H202 was extracted by homogenizing the 
leaves, petioles, cotyledons and hypocotyls with 
phosphate buffer (50 mM, pH 6.5) containing 1 mM 
hydroxylamine. The homogenate was centrifuged at 
6000g for 25 min. Afterward, the extracted solution 
was mixed with 0.1% (v/v) titanium chloride in 20% 
(v/v) H2SO4, then centrifuged at 6000g for 25 rain. 
Absorbance was measured at 410 nm, and the H202 
content was calculated using an extinction coefficient 
of 0.28 pmo1-1 cm -1 per fresh weight (Jena and 
Choudhuri, 1981 ). 

RESULTS AND DISCUSSION 

Pumpkin seedlings treated with a high dose of 
gamma irradiation (PIG) showed inhibited growth and 
premature senescence of their leaves, petioles and 

Figure 3. Localization of hydrogen peroxide in vessel (A and B) and parenchyma cell (C and D) of petiole in control (A and C) 
and plant irradiated at 1 kGy (B and D). CML, cell corner middle lamellae; IS, intercellular space; V, vessel wall. Bar = 1 pm. 
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hypocotyls. This phenomenon was especially remark- 
able in the leaves. In contrast, senescence proceeded 
more slowly in the PIG cotyledons than in the con- 
trois. 

Cross-sections of histochemically stained tissues 
were examined by light microscopy (Fig. 1). Vessel 
sizes did not differ significantly between leaves from 
control and PIG (Fig. 1A and B). However, com- 
pared with the irradiated tissues, sections of petioles 
and hypocotyls from the controls were well devel- 
oped as large and open vessel elements (Fig. 1C-F). 
In contrast, the vascular bundle regions of PIG coty- 
ledons were much larger in both their dimensions 
and cell numbers than those from the controls (Fig. 
1G and H). 

We used cerium perhydroxide deposits (CPDs) as 

markers to determine the distribution of H202 on the 
plasma membranes in both vessels and parenchyma 
cells in the leaves (Fig. 2A and C). Although the distri- 
bution patterns were similar in the vessels of both 
control and PIG (Fig. 2A and B), the CPD intensity in 
treated plants was significantly higher. Moreover, the 
deposition pattern and intensity of CPDs in the 
parenchyma cells of PIG (Fig. 2D) differed signifi- 
cantly from the controls (Fig. 2C); CPDs were heavily 
deposited in the PIG cell corner middle lamellae and 
plasma membranes (Fig. 2D). 

In the petiole (Fig. 3), the reaction was mainly asso- 
ciated with the cell corner middle lamellae in PIG 
parenchyma cells (Fig. 3D), with the difference being 
negligible between PIG and control vessels (Fig. 3A 
and B). H202 was not deposited on the plasma mem- 

Figure 4. Localization of hydrogen peroxide in vessel (A and B) and parenchyma cell (C and D) of hypocotyl in control (A and 
C) and plant irradiated at 1 kGy (B and D). V, vessel wall. Bar = 2 pm. 
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Figure 5. Localization of hydrogen peroxide in vessel (A and B) and parenchyma cell (C and 13) of cotyledon in control (A and C) 
and plant irradiated at 1 kGy (B and 13). CML, cell corner middle lamellae; V, vessel wall. Bar = 0.5 I~m. 

brahe in either cell type. 
In the hypocotyls (Fig. 4), the distribution patterns 

were similar to those in the vessels and parenchyma 
cells of the leaf and petiole. The reactions, found 
mostly on the middle lamellae of both, varied in their 
intensities, but differences between the control and 
PIG plants were less than those measured in the 
leaves and petioles. Interestingly, a reverse pattern of 
CPD was observed between the vessels and paren- 
chyma cells of the cotyledons. Although parenchyma 
cells were similar in pattern and intensity to those of 
other tissues (Fig. 5C and D), the intensity in the ves- 
sels was high in the controls but low in the PIG (Fig. 
5A and B). These results were in good agreement 
with those recorded for H202 content (Fig. 6). 

The concentration of gamma ray-induced H202 
increased in all tissue types (Fig. 6), with the highest 
level measured in the PIG leaves. In contrast, content 
was higher in control cotyledons than in those of the 
PIG plants. In addition, a reverse pattern of CPD was 
observed via TEM in the cotyledon vessels (Fig. 5A 
and B). 

In most cases, H202 accumulation, as defined by 
electron-dense cerium deposits, was typically associ- 
ated with the plasma membrane and middle lamel- 
lae, and deposits were not detected inside the vessel 
walls. H202 contents were relatively high in the leaf 
and cotyledon but relatively low in the petiole and 
hypocotyl. CPD density was greatest in the PIG 
parenchyma cells. Although H202 contents increased 
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Figure 6. H202 content in total homogenates from tissues at 
19 d after gamma irradiation. Data are means with standard 
errors (n = 4). 
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